

MIDI SWEET SERIES
MIDI SWEET : MIDI Clock Sync [AUDIO UNIT]

MANUAL

CREATE YOUR OWN MIDI CLOCK TRIGGERS AND CONDUCT OTHER APPS AND
EXTERNAL MIDI DEVICES FOR TEMPO-SYNCHRONIZED PLAYBACK.

page of 1 9

Preface

There seems to be much confusion, what MIDI Clock is and
how it works. Now, the CLOCK signal is just a MIDI realtime
message that is sent 24 times a quarter note for being able to
calculate the current tempo of the sender at the location of
the receiver.

It is by no means a song positioning signal, nor does it
transmit any other information than its pulsing signal.
Although there can be a possible combination with START,
STOP and CONTINUE signals, but this is very different than

page of 2 9

for instance a concrete MIDI SPP (Song Position Pointer)
signal, which is much more complex and thought for bar
based song positioning.

It is also often mismatched with MTC (MIDI Time Code). this
signal is in contradiction to the MC completely independent
from the song tempo. The time code is exclusively expressed
in hours, minutes, seconds and frames. It is correctly clocked
to the current real world time starting from a certain point.

We often see people talking about these things in complete
misunderstanding and mismatching of these facts. Especially
some users are asking for a MTC clock synchronized to a
song tempo and song position. This is complete nonsense,
as these two things have nothing in common. The SPP
however can deliver something that is desired here. It is
synchronized to the song tempo and transmits discrete song
positions regarding the musical information of a song.

MIDI Clock sync so does nothing different than just sending
intervals of impulses. There is no timing information other than
the time between these generated impulses. Device
Synchronisation requires allot more than this.

Another fact is the widely spread misunderstanding of timing
precision and jittering. It is just not true, that specialized
external atom clock precision hardware devices are required
to generate a good MC signal. Even inside the digital domain
absolutely perfect signals and synchronisation can be created
with very simple methods. The reason is that audio and MIDI
on a digital device are 100% synchronized if implemented
correctly, with the precision of a single audio sample at
certain samplerate. The samplerate gives the resolution of i.e.
48000 or 96000 Hz, this is pulses per second, by the way.

MIDI Clock Sync is always 100% synchronous to the devices
native audio clock, meaning it is absolutely sample accurate,

page of 3 9

more accurate than any external hardware can ever be.
However, jittering may occur, if transmission to external
equipment is used. This kind of imperfection is then caused
by the transmitters, not the digital MC signal. It also can
occur, if the receivers do implement the reading algorithms
incorrectly per sample block instead of the given precise
sample offset positions.

MIDI SWEET: MIDI Clock Sync

MIDI Clock Sync is the first product of our MIDI SWEET series
and one of those tools, providing essential or experimental
but useful functions for MIDI connectivity in form of Audio
Units.

MIDI Clock

The classic MIDI Clock (MC) is a normed MIDI status timer
signal, that is traditionally sent and received with nearly every
hardware device, that relies on musical tempo information.
From drum machines, arrangers, synthesizers, sequencers
up to effect units, DJ mixers and lighting machines, many
hard- and software devices are using this simple impulse
signal to synchronize internal timing processes to the musical
tempo of a selected master source.

The digital world unfortunately more and more has dropped
or neglected native support for MC, which is very sad and
also a really bad progression for entire music connectivity in
general. Because MIDI Clock can make allot of sense, if you
connect and sync external hardware devices to iOS via MIDI
connections of any kind. It can even synchronize the tempo
information between different playing iOS devices and internal
apps via MIDI signalling in realtime. Unfortunately many iOS
apps and even hosts and sequencers do not really support it

page of 4 9

or do send a jittering signal based on timer threads, which
potentially introduces timing problems.

Audio Unit

We have developed a visual Audio Unit, that can create and
handle user defined MIDI Clock signals and bring back this
technology to your fingertips and control. Even if your host
does not support MC, you can load the audio unit and
generate your own.

Please note, that this Audio Unit is (intentionally) defined as
MIDI enabled audio effect.

MIDI Clock Sync will register as an audio effect (or music
effect) but it will not produce any sound. The audio part is
required, because it needs a sample processing block to
sync the generated impulses exactly to the running audio
clock, which is always 100% stable. Our unit is therefore
highly precise, that means sample accurate, because it is not
based on any timers nor does it depend on the current
processor load or such. It is always generated in absolute
sync to the timing stable audio clock (sample stream) of a
running iOS device. The audio engine must be continuously
running, only this way the precise MIDI clock can be
generated.

Please also note, that the UI updating thread is completely
separated from the audio processing thread therefore, so that
the clock impulses are always tight, even if the graphics
performance may be overloaded or throttled down by the
system for some reasons.

From a technical view of sight, MC will calculate and send 24
exactly timed MIDi status message bytes per (imaginary)
quarter note with correct sample frame offsets. There is no

page of 5 9

time code transmitted nor is it indicated when a quarter note
was reached or something like that. The anonymous impulses
are sent continuously without any counting and it depends on
the receiver, how fast it reacts to timing clock changes or
whether these signals will be used or just ignored.

Transmitter versus Receiver

The MIDI Clock Sync Audio Unit has 2 basic modi. The first
mode is a MIDI Clock generator (transmitter). It generates and
sends the MC impulses with the precision of a user definable
fixed floating point tempo value, that can be adjusted by
sliding the tempo controls between 10,000 to 480,000 BPM
(beats per minute). A visual running circular light will indicate
the running state.

The second mode (receiver) is able to receive ANY valid
incoming MC signals and then calculates and displays the
resulting tempo (i.e. from external hardware devices or from
other internal master sources). Thus, the transmitter mode
can be seen as a master clock source and the receiver mode
as a virtual slave device.

We implemented the slave mode for testing purposes merely,
due to the fact, that MC signalling is not very well
documented by most music apps, providing it. It is often even
unclear, whether a signal is really sent or received or not. We
have checked some hosts claiming to send the signal, but
they actually didn’t. MIDI Clock Sync receiver can check the
state easily and give you a visual feedback of the MC
functionality and its progression. So the two modi do work
completely independent of each other.

If the unit is switched to transmitter mode, it will not receive
external signals and vice versa.

page of 6 9

The distribution app, for instance, loads 2 instances of the
audio unit into two virtual plugin windows onto the screen at
same time, to demonstrate both modi of the audio unit at
ones. The windows can be arranged and resized. This app is
basically a minimal Audio Unit host, that can handle MIDI
input (external, internal and those signals, coming from
loaded audio units).

The Transmitter (orange) acts as the sender of a MIDI Clock
signal, the Receiver (blue) acts as a slave device, receiving the
signal via internal MIDI loopback and then calculates the
resulting tempo. In other words, the MC stream is sent to the
host app by the transmitter, the host just forwards the MIDI
signal back to the receiver. This all should be sample accurate
and not relay on additional timers but the audio clock (sample
rate). Otherwise there is anything wrong in the hosts
conception.

These both instances of MIDI Clock Sync can be switched to
their inverted mode and thus change their roles on the fly. The
demo app practically does not make any sense, it is merely
for a demonstration, but it has advanced MIDI connectivity, so
you could practically send and test received MC signals with
some activated external MIDI ports.

Usage

The MIDI Clock Sync audio unit itself is easy to use and self-
explaining. Please note, that these kind of plugins generally
require a host application, that supports MIDI callbacks and
actually is able to handle such MIDI loopback messages by
forwarding to a useful destination. Such destinations can be
internal and external MIDI devices and apps, connected to
the MIDI ports.

Please note, that external connections may degrade the
signal stability due to baud- and transmission rates and such.

page of 7 9

Some users may ask, why they should need a MIDI Clock
Sync generator as an audio unit, if their host app actually can
do this. Well, most hosts implement one master clock,
nothing more and nothing less. Some hosts even do not
implement it at all. Imagine, you could connect and sync
different devices with different tempi or you just want to start
additional playback of external equipment, tempo
synchronized in a live session or via automation and so on.
The possibilities are complex and will not be exercised in
detail here.

The MIDI Clock Sync transmitter mode additionally sends
MIDI Start/Stop/Continue messages, if you press the Start/
Stop button, which could be very useful for some external
hardware stuff or to conduct a chain of connected apps and
devices with the touch of a finger or via automation. It also
can be switched off, effectively resetting the internal counters.

The receiver mode can show incoming MIDI Start/Stop/
Continue and Reset messages and process automated
parameter changes but it will not generate anything. other
than visual information. Although, there is a MIDI Thru
parameter implemented, which optionally loops all received
MIDI messages back to the host app.

Please note, that only messages sent to a rendering process
in receiver mode will be looped back. There is a certain
danger of creating endless message loops this way.

The default state of a loaded MIDI Clock Sync audio unit is
the receiver mode (blue). You can switch the mode by
tapping the switch control at the bottom of the user interface.

page of 8 9

(c) 2019 digitster.com

page of 9 9

http://digitster.com

